Construction of $\varphi_{k}=\varphi_{k}^{\text {RS }}$
Induction on $|k|$
Bore $K=\phi \quad \varphi_{\phi}:\{\phi\} \longrightarrow\{\phi\}$
Induction Step:

remove corner box. $\tilde{k}=k \backslash\{c\}$
and let $\tilde{A}=A$ without entry in the box C.

by induction, we have the mop, let's explain
how to add:

$(k-1)^{\text {th }}$ diagonal $\quad \mu_{1} \quad \mu_{2} \quad \mu_{3} \quad \mu_{4} \ldots l_{1} \ldots$ $k^{t h}$ diagonal $\lambda_{1}^{\prime \prime} \lambda_{2}^{2} \lambda_{3}^{\prime \prime} \cdots 0 \cdot \ldots$

we have $\lambda_{i} \epsilon\left[\max \left(\mu_{i+1}, \nu_{i+1}\right), \min \left(\mu_{i}, \nu_{i}\right)\right]$

toggle operation:

$$
\lambda_{i}^{*}=\min \left(\mu_{i}, \nu_{i}\right)+\max \left(\mu_{i+1}, \nu_{i}\right)-\lambda_{i}
$$

and $\lambda_{0}^{*}=\max \left(\mu_{1}, \nu_{1}\right)+a$
where a is the entry of A in corner box C.

Step B is obtained from \tilde{B} by replacing the diagonal $\lambda_{1}, \lambda_{2}, \ldots$ by $\lambda_{0}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}, \ldots \square$.

